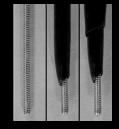
A RADIOLOGIST'S VIEW OF OPEN BYPASS VERSUS ENDOVASCULAR AS FIRST TREATMENT FOR CLTI:

BYPASSES STILL HAVE AN IMPORTANT ROLE

Dr. Konstantinos Katsanos, MSc, MD, PhD, EBIR


Professor in Interventional Radiology School of Medicine, Patras University Hospital, GR

1

Conflicts of interestNothing to declare

2

Evolution of vessel dilatation

OTTER dilators, 1964

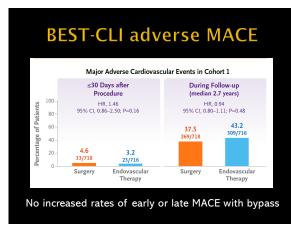
3

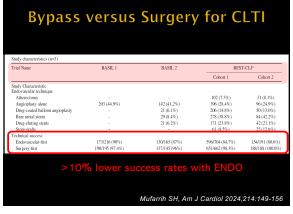
Endovascular Arguments

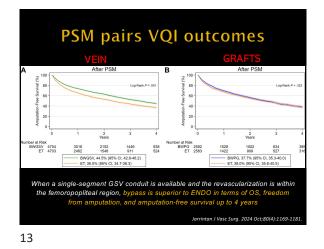
Percutaneous Angioplasty	Femorodistal bypass
Comorbidities eligible	Eligibility varies
Variable access options	Standard anatomical approach
Native vessels recanalization	Vein conduit necessary
Low complication rate	High complication rate
Demanding interventional skillset	Demanding surgical skillset
May be repeated multiple times	Revision very difficult
Maintains bypass options	Burns angioplasty options
2-3 vessels recanalization	Single line of flow to the foot

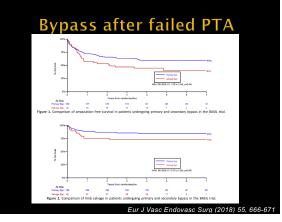

4

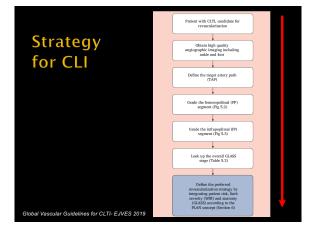
However, ...


- Poorer long-term patency & multiple redo
- Demanding skillset for pedal access and new technologies (atherectomy, DVA, etc)
- Multiple stents (long metal jackets) for heavily calcified lesions eventually fail
- Wasting \$\$\$\$\$ of catheters/devices without success in approx. 10% of the cases




Library	Informed decisions. Better health.			Cochrane Databa	se of Systematic Revie
Analysis 1.10. Cor Study or subgroup	nparison 1 Bypas Surgery nN	s surgery compan Angioplasty চাস	ed with angioplasty (PTA) Odds Ratie M-H, Fixed, 95% CI	, Outcome 10 Teo weight	chnical success. Odds Ratio M-H, Fixed, 95% Cl
Veterans Study	133/133	110/130		- 1.37%	49.53(2.96,828.2
BAESIC study	24/24	27/90		1.61%	6.24(0.31,126.8
BASIL study	190/228	173/224	-	95.49%	1.47[0.92,2.3
Lepantalo 2009	21/21	21/23		1.53%	5(0.23,110
McQuade 2010	54/50	50/50			Not esti mabl
Total (95% CI)	456	457	•	100%	2.26[1.49,3.4
Total events: 418 (Surgery), 38	L (Angioplasty)				
Heterogeneity: Tau ² =0; Chi ² =8.	52, df=3(P=0.04(; 1 ² =64.0%				
Test for overall effect: Z=3.83 P	-a)				
0	cant Od		2.2 times		



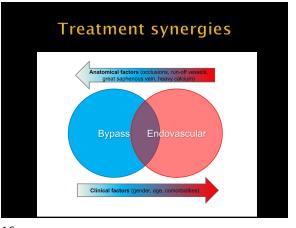


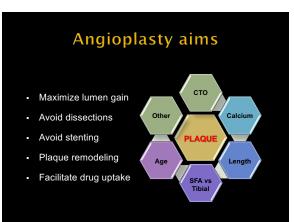
Summary

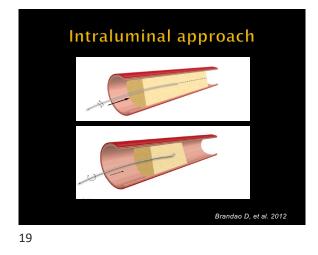
- ENDO significantly more failures than BYPASS

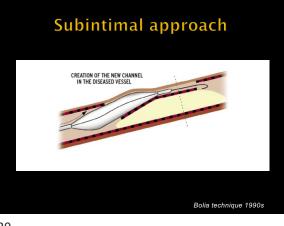
RCTs maintain an AFS benefit for vein bypass

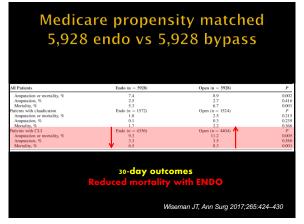
· VEIN bypass still recommended for above

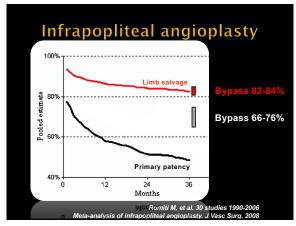

knee procedures (patient selection)

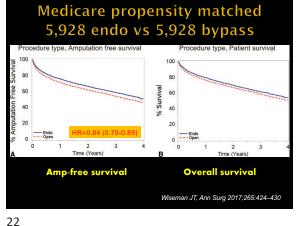

· ENDOvascular is not a "risk-free shot" at

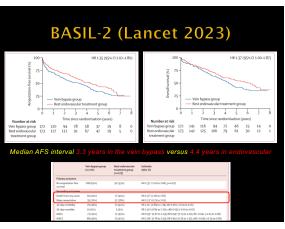

revascularization for CLTI

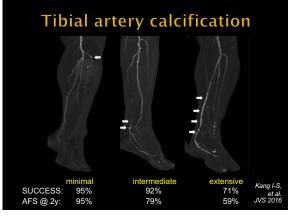

surgery over ENDO

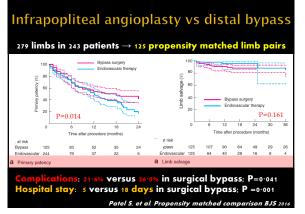

15

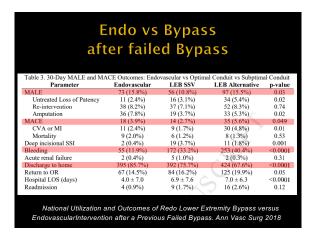


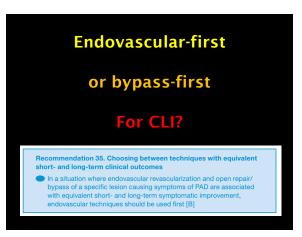


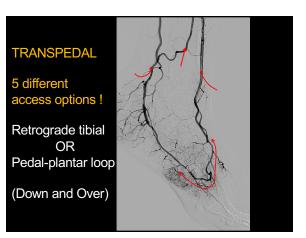


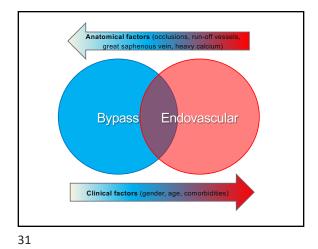









27



26

Endo vs Bypass after failed Bypass Incidence Procedure LEB 518 v Femoropopliteal bypass w/ single segment saphenous vein Femoral distal bypass w/ single segment saphenous vein Popliteal distal w/ single segment saphenous vein 252 (48.6%) 185 (35.7%) 81 (15.6%) 627 307 (48.9%) Femoropopliteal bypass w/prosthetic/spliced vein/composite Femoral distal bypass w/ prosthetic/spliced vein/composite Popliteal distal bypass w/ prosthetic/spliced vein/composite 264 (42.1%) 56 (8.9%) 461 IEI 461 345 (74.9%) 116 (25.1%) Femoropopliteal angioplasty/stenting/atherectomy Tibial angioplasty/stenting National Utilization and Outcomes of Redo Lower Extremity Bypass versus EndovascularIntervention after a Previous Failed Bypass. Ann Vasc Surg 2018

		Summary meta-analysis plot [random effects]	
	Arvela 2019		0.38 (0.18, 0.80)
Limb calvaga	Varty 1996		1.00 (0.40, 2.51)
Limb salvage	Zdanovski 1997	÷	0.88 (0.81, 1.19)
_	Wolfe 2000 Humas 2004		0.89 (0.63, 1.55) 0.25 (0.08, 0.84)
	Hymes 2004		0.25 (0.08, 0.84)
30 studies - 29688 cases	Feale 2005		0.31 (0.15, 0.65)
	Kado 2006		0.39 (0.16, 0.93)
	Taylor 2006		1.35 (1.01, 1.81)
	Dosluoglu 2008		1.52 (0.32, 7.16)
	Chong 2009		0.91 (0.58, 1.43)
14523 endovascular	Khan MUN 2009		0.54 (0.24, 1.23)
	Dorigo 2009		0.33 (0.06, 1.72)
versus	Casella 2019 Brachary 2019		1.36 (0.52, 3.56)
	Soderstroe 2019		0.33 (0.27, 1.12) 0.73 (0.47, 1.12)
15165 surgical bypass	Vania 2010		0.45 (0.06, 3.32)
green green green	Feglia 2011		0.31 (0.14, 0.71)
	Kortonen 2011		1.79 (1.07, 2.97)
	Venemo 2011	-	0.64 (0.67, 1.07)
(1 randomized E	Chan 2014		0.63 (0.30, 1.22)
(1 randomized, 5	Soga 2014		0.77 (0.44, 1.26)
propensity matched, 4	Heu 2015		0.23 (0.03, 1.62)
propensity matched, 4	Kash 2015 ORT73CH 2016	•	0.25 (0.11, 0.58)
multivariable adjusted.	Det 1/3CH 2015		0.89 (0.57, 1.30) 0.47 (0.17, 1.35)
manivanabic aujusica,	Darling 2017	-	0.78 (0.58, 1.09)
20 unadjusted cohorts)	Dick 2017		1.27 (0.68, 2.28)
	Hoks 2017	-	1.05 (0.80, 1.40)
	Wiseman 2017		0.52 (0.45, 0.59)
IR (95%CI): 0.74 (0.62-0.87)	combined		0.74 (0.62, 0.07)
in (337801). 0.14 (0.02-0.01)	0.01	a's a's a's i s i "ratio (35% confidence interval)	10
		 racio (zoni confidence interval) 	

	Patient Su	IVIVAI	
Bias assessmen	nt plot	Summary meta-analysis plot [random ef	iects]
Λ.	forals 2010		0.87 10.56 1.3
	Ziannanki 1997	-	1.00 /0.87. 1.1
···· / (%)	· Feale 200		0.97 (0.66, 1.4
a+	Rudo 2006		0.96 (0.64, 1.4
/*	Deskepti 2008		1.07 (0.51, 2.3
04 /0	Chong 2009		1.82 (1.36, 2.4
	Dorigo 2009	· · · · ·	2.12 (1.20, 8.
·* / · · ·	Casalla 2010 -		0.56 (0.20, 1
	Bredbury 2010		1.08 (0.84, 1.
7 / * *	Soderstrom 2010	_ 	0.93 (0.69, 1.
at	Verele 2010		1.63 (0.49, 5.
3 2 3 0	f 2 3 Log*ratio) Fagla 2011		0.55 (0.29, 1)
	Kortonen 2011	_ + _	1.04 (0.78, 1.
	Chan 2014		0.53 (0.27, 1)
	Soga 2014		0.91 (0.64, 1.
	Ketb 2015		1.11 (0.75, 1)
	OR17250H 2016		1.14 (0.80, 1)
	Patel 2016		1.70 (0.86, 3.
	Durling 2017	- - -	1.40 (1.09, 1.3
	Dek 2017		r.30 (0.79, 2.
	Hoka 2017		0.71 (0.44, 1.)
	Wiseman 2017		0.91 (0.86, 0.5