O Corewell Health

Ocrewell Health"

Effect of Optimal Medical Therapy: BEST-CLI Trial

Vikram S. Kashyap MD, FACS, DFSVS Frederik Meijer Chair, Meijer Heart and Vascular Institute Vice President, Cardiovascular Health Professor of Surgery, Michigan State University

@VikKashyapMD @FM_HVI

O Corewell Health

umont + 🐳 Spectrum

Co-authors

Joshua A. Beckman, Gheorghe Doros, Matthew T. Menard, Kenneth Rosenfield, Mark A. Creager, Katherine R. Tuttle, Katharine L. McGinigle, Thomas Huber, Scott Kinlay, Alain T. Drooz, Michael B. Strong, Ido Weinberg, Alik Farber, Michael R. Jaff on behalf of the BEST-CLI Investigators

O Corewell Health

Background and Objectives

- The use of guideline-directed optimal medical therapy (OMT) is considered a cornerstone of treatment in patients with chronic limb threatening ischemia (CLTI).
- The Best Endovascular vs Best Surgical Therapy in Patients with CLTI (BEST-CLI) compared revascularization strategies in patients with CLTI.
- In this pre-specified analysis, we studied the effect of OMT intensity on the outcomes of patients with CLTI.

Corewell Health 6 Colege of Human Medicin

Methods

- A multispecialty committee defined OMT criteria during the trial design.
- OMT included metrics that each received 1 point: hypertension management, lipid-lowering and anti-platelet medication use, and tobacco cessation.
- \bullet Patients were stratified by OMT scores from 0 to 4.
- OMT scores were assessed for the duration of the trial.
- The association of Major Adverse Limb Events (MALE), Major Adverse Cardiovascular Events (MACE), and death were examined.

OMT scorin	g	🔾 Corewell He	balth 🦷 🌋 College of Harves Medices
	OMT Criteria	Points	
	Controlled blood pressure	1	
	 <150/90 mmHg in patients aged >=60 		
	- <140/90 in those aged <60 years		
	Not currently smoking	1	
	On at least 1 lipid lowering medication	1	
	On at least 1 antiplatelet agent	1	
	Controlled diabetes mellitus as evidenced by HbA1c < 7	*	
	*not used in further analyses due to missing values		

lts—Baseline Cha	aracteristics Stratified by OMT Score					
Characteristics (Overall N = 1782)	Score 0 & 1 (N = 227)	Score 2 (N = 436)	Score 3 (N = 673)	Score 4 (N = 446)	P-Value	
Demographic						
Age (Yrs)						
Mean ± SD	64.1±9.8 (227)	66.0±10.0 (436)	67.4±9.5 (673)	69.6±9.1 (446)	<.001	
Median (Q1, Q3)	63.4 (58.5.70.7)	65.5 (59.6.72.8)	67.1 (60.9.74.0)	69.8 (63.9.75.2)		
(Min, Max)	(27.9.88.9)	(28,7,91,1)	(42.6.91.8)	(35.2.94.1)		
Gender					0.260	
Male	68.3% (155/227)	69.5% (303/436)	72.1% (485/673)	74.4% (332/446)		
Female	31.7% (72/227)	30.5% (133/436)	27.9% (188/673)	25.6% (114/446)		
Medical History						
BMI (ka/m²)						
Mean ± SD	26.4±5.7 (222)	27.8±6.0 (425)	28.0±6.0 (658)	28.8±5.9 (435)	<.001	
Median (Q1, Q3)	25.5 (22.1.29.4)	26.9 (23.4.31.1)	27.3 (23.6.31.7)	28.0 (24.4.32.0)		
(Min, Max)	(16.4.46.8)	(14.4.49.5)	(15.8.51.9)	(14.3.52.5)		
Hypertension	75.3% (171/227)	84.2% (367/436)	89.7% (604/673)	92.8% (414/446)	<.001	
Hyperlipidemia	38.8% (88/227)	67.0% (292/436)	81.0% (545/673)	87.7% (391/446)	<.001	
Diabetes	51,5% (117/227)	68.6% (299/436)	71.6% (482/673)	76.2% (340/446)	<.001	
Current smoking	74.4% (169/227)	54.8% (239/436)	33.7% (227/673)	0.0% (0/446)	<.001	
Coronary artery disease	21.1% (48/227)	35.6% (155/436)	47.3% (318/673)	64.1% (286/446)	<.001	
Congestive heart failure	3.5% (8/227)	3.2% (14/436)	6.2% (42/673)	9.2% (41/444)	<.001	
Stroke	10.6% (24/227)	10.8% (47/436)	15.3% (103/673)	15.9% (71/446)	0.040	
Chronic obstructive pulmonary disease	14.5% (33/227)	15.6% (68/436)	17.5% (118/673)	11.2% (50/446)	0.037	
Enduetana kidnau disaassa	0.00((15/227)	10.99/ (47/439)	11 39/ (78/873)	10.49/ (EE(4.4E)	0.144	

		Major Paintenentione	MACE	Supring	
Covariate (Effect) at baseline	MALE HR (95% CI), p-value	inajor reinterventions		our river	
Age (additional 10 years)	0.89(0.79,0.99),p=0.032	0.91(0.80, 1.05),p=0.192	1.23(1.12,1.35),p<0.001	1.07(0.99,1.16),p=0.098	
CHF	1.43(0.97,2.12),p=0.072	1.36(0.83,2.21),p=0.219	1.71(1.27,2.31),p<0.001	1.60(1.22,2.11),p=0.001	
ESRD	1.44(1.05,1.98),p=0.023	0.91(0.58,1.43),p=0.686	3.21(2.55,4.04),p<0.001	1.96(1.57,2.44),p<0.001	
Female Sex	0.83(0.65,1.06),p=0.133	0.87(0.65, 1.16),p=0.337	0.96(0.79,1.17),p=0.708	0.86(0.73,1.03),p=0.100	
Infrapopliteal Disease	1.11(0.88,1.40),p=0.365	0.88(0.68,1.16),p=0.369	1.12(0.93,1.36),p=0.230	1.14(0.96,1.35),p=0.127	
Prior Infrainguinal Revascularization	1.07(0.70,1.63),p=0.765	1.13(0.68,1.87),p=0.646	1.19(0.85,1.66),p=0.321	1.19(0.89,1.59),p=0.241	
Randomized to Open Surgery	0.52(0.42,0.65),p<0.001	0.41(0.31,0.54),p<0.001	0.91(0.77,1.08),p=0.298	0.70(0.60,0.82),p<0.001	
OMT Score (3/4 vs 0/1)	0.74(0.57.0.96) p=0.023	0 73/0 54 1 00) p=0.051	0.92(0.73.1.16) c=0.471	0.82(0.67.1.01) n=0.063	

Forest plot of MALE using	time vai		Corewell Health 🦷 🌋 Collect of Human Medicine		
Variable	p-value	Adj.HR (95% CI)			
OMT Score					
(3,4) vs (0,1,2)		0.73(0.56,0.94), p=0.016			
+ 10 year		0.83(0.73,0.94), p=0.005	-		
Yes vs No		1.41(1.09.1.81), p=0.008			
Cohort					
2 vs 1		1.20(0.89,1.61), p=0.234	_		
Sex					
Female vs Male		0.77(0.57,1.03), p=0.080		-	
Race	0.41				
Afr Amer vs Whit	8	1.16(0.86,1.56), p=0.345	_		
Other vs White		0.80(0.46,1.38), p=0.419			
Strata	0.19				
1 vs 4		0.53(0.29,0.94), p=0.031			
2 vs 4		0.91(0.68,1.23), p=0.536			
3 vs 4		0.87(0.55,1.36), p=0.535			
WIFI Stage	0.28				
3 vs 1 or 2		1.10(0.77,1.58), p=0.593		•	
4 vs 1 or 2		0.86(0.60,1.24), p=0.425			
		0	0.5	1 1.5 2	
			Adjusted F	Hazard Ratio	

Conclusions

🜔 Corewell Health' 🖌 Golger of Human Medicine

- In a clinical trial setting of patients with chronic limb threatening ischemia, medical therapy use improved modestly early in a trial environment but was highly variable through the trial follow up.
- Higher OMT scores were associated with reduced risk of MALE and major reintervention in patients undergoing revascularization for CLTI.
- More intensive medical therapy was not associated with lower risk of MACE, including death.

