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VASCULAAID

Prediction of vascular disease progression and the
risk of cardiovascular events in
AAA and PAD patients
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Predictions based on imaging
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Novel Biomarker Prediction from omics
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Novel Biomarker Prediction from omics
lics,
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Harmonizing data resources

+To harmonize the primary resources into the graph, established ontologies
‘were selected for each node type.

+ Overlap across ontologies is resolved.

Diseases Mondo disease ontology https://www.ebi.ac.uk/olsa/ont
ologies/mondo

Genes Entrez ID https://www.ncbi.nlm.nih.gov/g
ene
Proteins Protein ontology https://www.ebi.ac.uk/olsa/ont
ologies/pr
Anatomical entities Uberon https://www.ebi.ac.uk/olsd/ont

ologies/uberon

Biological processes Gene ontology https://geneontology.org/

Molecular functions Gene ontology https://geneontology.org/

Cellular components Gene ontology https://geneontology.org/

Pathways Reactome https://reactome.org/

VASCUL{AID

Pathway enrichment analysis

- Reactome pathway enrichment analysis to assess functional similarity between
the predicted proteins and known disease-related proteins.

Pathways enriched in both sets
Significant pathways in predicted set
with relevance to AAA
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oo Integration to Al workflow

Graph Neural Networks (GNNs) for Multi-Omics Integration:
*GNNs leverage proteomics data AAA patient classification.

“Nodes in the graph represent proteins (both known and novel predicted), and & o
edges represent i between proteins (i or i -
“Experimental omics data (protein expression levels in biood and aneurysmal L4
tissue, experiments ongoing) serve as node features.

Patient-level classification: & e

+Graphs are aggregated at the patient level, and the patient's risk category (e.g., low, medium, high risk
for AAA) is predicted based on the protein expression patterns and network structure.
Dynamic Learning:

*GNNs can adapt as new data (novel proteins, new pathways, etc.) becomes
available.

Clinical Application:
+ Personalized treatment strategies for AAA, with precision medicine approaches based on proteomics and pathway data.
+ Improved identification of high-risk patients for targeted interventions and monitoring.
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