

Percutaneous AVFs

- Were introduced in 2017
- "Create an AVF without incision without trauma"
- $-\,$ 2 FDA and CE (MDR) approved devices available now
- WavelinQ (BD) and Ellipsys (Medtronic)
- $-\,$ Initial "hype" was high with increasing usage
- "missed" widespread adoption worldwide
 - $-\,$ Decreased usage over the last 2-3 years
- Selected experienced users (WavelinQ, Ellipsys or both) left

Challenge	with Percutaneous AVFs	
	Cannulation difficulties	
	High Reintervention rates	

Challenges with Percutaneous AVFs

Flow directing procedures to achieve functional maturation (high intervention rates)

- Fistula flow is the best predictor of maturation and unassisted cannulation
- Embolization of deep venous outflow

(Juxta)Anastomotic stenosis (high intervention rates)

- Combination of "energy" injury \pm angioplasty and turbulent hemodynamics

	Generation 2.0 A pAVF that rep
What to expect from next generation endoAVF devices?	✓ Optimal geometry f support fast matura
	Single outflow
We need cheaper devices (index procedure cheaper)	✓ Lowest incidence of
Ve need less interventions after endoAVF creation	Absent inflammation Endothelium shielded
low-up costs lower)	No angioplasty
	✓ Ease of use + Access

Additionally: fast and technically successful

A pAVF that replicates surgical AVF anatomy	
✓ Optimal geometry for ideal flow conditions to support fast maturation	
Single outflow	
No need for flow diversion or embolization	
✓ Lowest incidence of anastomotic stenosis Absent inflammation or thermal injury	
Endothelium shielded from turbulence	
No angioplasty	
✓ Ease of use + Accessibility	
Local anesthesia / block only	
Ultrasound	

Prospective, single-arm, single-center, open-label study Clinicaltrials.gov NCT 0575772						
10 subjects have completed the final study one year follow up vis						
Number Enrolled	10	Radial artery diameter	3.0 (2.3 - 3.7)			
ge	47 (27 - 62)	CPV diameter	3.9 (3.6 - 4.9)			
lale gender	8/10 (80%)	Upper arm venous outflow				
BMI	26.7 (20.0 - 38.1)	Cephalic + Basilic	7/10 (70%)			
Diabetes	6/10 (60%)	Cenhalic	3/10 (30%)			
lypertension	10/10 (100%)		e, _e (ee.e)			
Etiology of Kidney Failur	e					
	4/10 (53%)					
Hypertension	4/10(52%)					

Generation 2 pAVF Velocity System

Summary

- FIH experience with <u>Velocity System</u> demonstrates <u>implant advantages</u> and <u>anticipates</u>
 - Ideal flow into superficial venous system optimizes time to maturation
 Maturation without needing adjunctive procedures such as embolization or

VENOVA MEDICAL

- PTA
- Single outflow preserves inline cannulation in upper arm
- Reduction in CVC duration time
- Reduction in reintervention and costs

