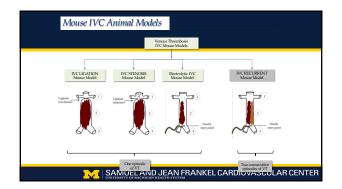
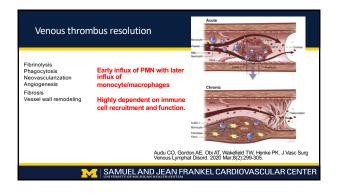
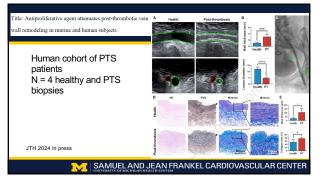


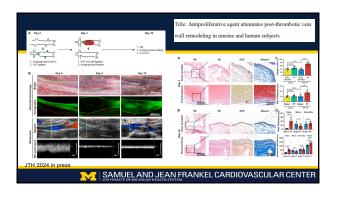
Overview – human and exptl PTS

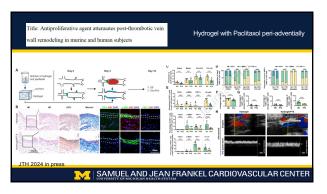

- Clinical background and need for new Rx
- Imaging of human post DVT veins
- Antiproliferative agent to prevent
 PTS
- Nanoparticles

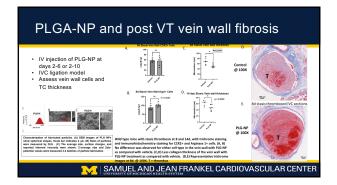
Mainstays of medical therapy for DVT

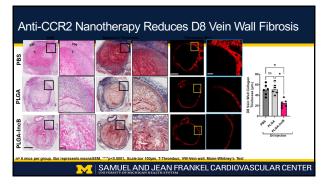

- Rapid and therapeutic anticoagulation
- Prevent recurrent DVT; promote resolution
- Leg elevation and compression
- Iliac vein stenting
 _ CTRACT in progress
- Provide an progress
 Provide a structure of the progress
 Provide a structu
 - Still defining the most appropriate patients

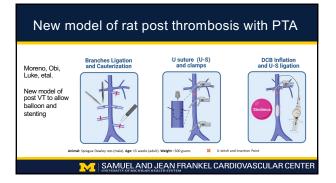



	Table 2 Vein wall th	ickness	measurements							
Means	-	Acut	e DVT		PTS			Cont	rol	
	Vein segment	N	Mean (mm)	95% CI (mm)	N	Mean (mm)	95% CI (mm)	N	Mean (mm)	95% CI (mm)
Controls = 0.37 mm	Common femoral	19	0.74	0.70-0.77	6	1.02	0.81-1.22	50	0.42	0.41-0.43
A 1 D) (T 0.00	Proximal femoral	18	0.68	0.65-0.70	- 5	0.91	0.83-0.99	59	0.38	0.37-0.39
Acute DVT = 0.63 mm	Mid-femoral	16	0.66	0.64-0.68	4	0.89	0.71-1.07	76	0.38	0.37-0.39
PTS = 0.85 mm	Distal femoral	16	0.68	0.64-0.71	12	0.88	0.75-1.01	91	0.39	0.38-0.40
13 = 0.03 mm	Proximal popliteal	16	0.66	0.63-0.69	20	0.93	0.79-1.06	86	0.39	0.38-0.40
	Distal popäteal	18	0.67	0.64-0.70	20	0.81	0.71-0.90	77	0.39	0.37-0.40
	Posterior Tibial	19	0.53	0.51-0.54	5	0.65	0.54-0.73	57	0.31	0.29-0.32
	Peroneal	22	0.53	0.50-0.55	9	0.66	0.62-0.77	59	0.31	0.29-0.32
	Proximal	103	0.68	0.67-0.69	67	0.89	0.84-0.94	515	0.40	0.39-0.40
	Call	51	0.52	0.51-0.53	11	0.66	0.59-0.72	106	0.32	0.31-0.33




		Stage 1	Stage 2	Stage 3
	Stasis Model (complete ligation)	2d	4d 8d	14d 21d
Mouse and	MSB stain			
human		~1wk	~7wk	~54wk
	H/E stain			
	Ť.	a.		-
	Stent Biopsy	Stage 1	Stage 2	Stage 3
		SAMUEL AND JEA		IOVASCULAR CENTER





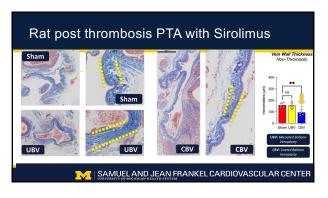


Table 1. Potential avenues for	novel therapies to reduce de	evelopment of or treat PTS	
Pathways involved in development of PTS	Molecular target(s)	Current state of investigation	Mechanisms involved
Endothelial to mesenchymal transformation	CCR7, Endothelin-1, TGFb	mice	Cellular response to injury, fibrosis
Leukocyte recruitment/venous inflammation	CAMs, CCR2, CXCR2	Mice, primates	Cellular trafficking, cellular activation
Inflammatory cytokine signaling	TLR-9, IL-6, IL-6Rα	Mice, rats	Cellular activation
Fibrinolysis	Fibrin, uPA, plasmin, PAI-1	mice	Thrombus clearance, maturation
Vein wall matrix metabolism	MMP-2 MMP-9	Mice, rats	Fibrosis
			re receptor7; CXCR, cysteine - x - cys- ; TLR, toll-like receptor; uPA, urokinase Translational Re

Summary		
varies All anir and the The fib antipro 	uses a fibrotic vein wall response that from person to person nal models suffer from non upright po is no hydrostatic pressure effects rotic response may respond to iferative and monocyte specific NP a of administration and how delivered w	sition gents

