

Criteria To Predict Mid-Term Outcome After Stenting Of Chronic Iliac Vein Obstructions (PROMISE Trial)

Prof. I. Baumgartner, Switzerland Bern Center for Vascular Medicine and Interventions www.vasc-alliance.ch

Dis	clo	su	res

None

Background

Endovenous stenting

- 1st line therapy for post-thrombotic iliofemoral vein obstruction (PTS)
- inflow vessel disease associated with increased risk of loss primary patency

Need to better define inflow vessel disease

avoiding stenting with the potential of clinical deterioration a/o possibly driving the decision towards hybrid interventions

J Vasc Surg Venous Lymphat Disord. 2024 May;12(3):101816, Eur J Vasc Endovasc Surg (2022) 63, 613-621

Medtronic

Predictive factors for patency after endovenous stenting

retrospective, monocentric study prospectively collected, consecutive patients (2008 - 2020)

rd 2023:11:91-9

211 chronic iliofemoral vein obstruction Û

108 patients fulfilled inclusion criteria readable duplex ultrasound and ascending contrast phlebography, magnetic resonance venography (MRV) or computer tomographic venography (CTV) at baseline

Hypothesis

inguinal iliac vein inflow defined at the level of the femoral bifurcation before stenting is a crucial factor for expected patency

Study design

- venous inflow defined by DUS as a. mid-respiratory, **peak flow velocity in cm/s** in CFV at the level of inguinal ligament and 2 cm below femoral vein
- confluence (DFV and FV, respectively)
- b. Postthrombotic changes in the CFV, DFV and FV
- \rightarrow differences between stent patency (occluded/opened)

- Statistica T test, Man Whitney U test, Chi-squared or Fisher's exact test skewed variables (US velocity of CPU, DPV and PV) log transformed Kaplan-Meier survival curves and log-rank tests multivariate logistic regression models to investigate proportional contribution of flow velocity and postthrombotic lesions of the inflow velocity. DPV and PV) to development of stent occlusion. receiver operating characteristic (ROC) curve used to analyze critical values of US velocity before stenting for occlusion, and sensitivity and specificity were obtained.
- J Vasc Surg Venous Lymphat Disord 2023;11:91-9

Baseline

Study population

- left side 64,8%, mean age: 47.4 \pm 15.4 years, 46.3% women
- inferior vena cava (IVC) involved in 34.3%
- 90 (83,3%) postthrombotic syndrome (PTS); 18 (16.7%) non-thrombotic (NIVL)

mean follow-up: 41 ± 26 months

J Vasc Surg Venous Lymphat Disord 2023;11:91-9

Results							
Baseline patient characteristics and comorbidities							
Demographics	Total (n - 108)	Occluded (n - 20)	Open (n – 88)	P valu			
Etiology				.022			
NIVLs	18 (16.7)	0	18 (20.5)				
PTO	90 (83.3)	20 (100)	70 (79.5)				
Anticoagulation at last F/U, yes	80 (74.1)	18 (90)	62 (70.5)	.072			
Antiplatelet agents at last F/U, yes	9 (8.3)	4 (20)	5 (5.7)	.059			
Stents (number)	2 (1-2)	2 (2-3)	2 (1-2)	<.001			
Stent localization							
CIV and EIV	34 (31.5)	0	34 (38.6)	<.001			
Additional stent in CFV	66 (61.1)	14 (70)	52 (59.1)				
Additional stent in DFV and FV	8 (7.4)	6 (30)	2 (2.3)				
US velocity, CFV, cm/s	20 (10-30)	7 (0-20)	20 (10-30)	.001			
US velocity, DFV, cm/s	11 (8-20)	10 (5.75-15)	12 (10-20)	.177			
US velocity, FV, cm/s	10 (5-15)	8 (5-10)	10 (8-15)	.001			
US post-thrombotic signs, CFV	73 (67.6)	20 (100)	53 (60.2)	.001			
US post-thrombotic signs, DFV	25 (23.1)	10 (50)	15 (17)	.003			
US post-thrombotic signs, FV	61 (56.5)	16 (80)	45 (511)	.019			

Predictive factors for stent occlusion

Odds ratios (OR) for stent occlusion defined for logarithmic ultrasound velocity measurements and post- thrombotic signs defined for inflow veins in the groin

	Model 1		Model 2	
	P value	OR (95% CI)	P value	OR (95% CI)
Log US velocity, CFV, cm/s	<.001	7.52 (2.54, 22.28)	<.001	9.49 (2.74, 32.83)
Log US velocity, DFV, cm/s	.081	6.79 (0.79, 58.20)	.097	6.22 (0.72, 54.06)
Log US velocity, FV, cm/s	.005	10.75 (2.07, 55.82)	.012	10.23 (1.68, 62.32)
US post-thrombotic signs, DFV	.006	4.51 (1.53, 13.25)	.008	5.02 (1.53, 16.42)
US post-thrombotic signs, FV	.033	3.62 (1.11, 11.84)	.042	3.64 (1.05, 12.70)
CFV, Common femoral vein; CI, confidence Model 1: adjusted for age and sex. Model 2: adjusted for age and sex smoking	interval: DFV, deep fo	emoral vein; FV, femoral vein; US, u I failure, vascular diseases, hyperte	Itrasound. nsion, obesity, thromb	ophilia).

Conclusion

Inflow disease as assessed by low peak velocities in the CFV as well as post-thrombotic findings in the DFV represent risk predictors for stent occlusions

after multivariate analysis including stent location as well, mid-respiratory low peak velocity in the CFV remained as a single highly significant, independent predictor for stent occlusion

DUS useful pre-interventional predictor considered for decision making process

→ listen to your DUS technician

