

U.S. Pivotal Trial overview

Study design

Prospective, non-randomized study with two arms.

■Short neck sub-study (≤ 60 degree) 80 patients

Robert Rhee, MD,⁴ Gustavo Oderich, MD,¹ Sukgu Han, MD,⁴ Chandler Long, MD,⁴ Patrick Muck, MD,⁹ Erin Moore, MD,² and Jon Matsumura, MD,² For the EXCC Investigators, *Brooklyn*, NY, Houston, TX. Los Angeles *CA. Durham*, KC, *Circininat*, OV, *BacksonNile*, FL, and Madison, VB ABSTRACT Objectives To report the 1-year clinical outcomes from the CORE EXCLUDER Conformable AAA Endoprosthesis system in the US regulatory trial. Methods: The study is a prospective, multicenter, investigational device exemption clinical trial at 31 US sites with core laboratory assessment of imaging and independent event adjudication. The primary safety fincidence of major adjuces events at 30 days) and effectiveness end points (juccesful aneugypoint treatment at 1) year) were assessed in a cohort of demonstrated with 98.5% freedom from primary effectiveness end point events at 1 year and 100% freedom from primary safety end point events assessed through 30 days. (J Vasc Surg 2022;76:951-9.) neprintory failure, med failure, proveduel blood las dramove har 1020 mL, ex thromborrholle events licelular) print occlusion or other than 10 mer van en bygin of lar metabalas distribution (a hist.) 4 metabalas and a sub-tornography caas. There were to iter factures, devon migrations (a bit) mm2. Ad nutures or conversions to gene urgical regario distribution. The sub-set metabalas and a sub-set match and a sub-were no anexysm-related deaths within the 12 month followup, and freedom from anexysm-related motality was 100% through 19 war. 100% through 1 year. Conclusions: The safety and effectiveness of the CORE EXCLUDER Conformable AAA Endoprosthesis system has been demonstrated with 985% freedom from primary effectiveness and point events at 1 year and 100% freedom from pri-may alkely end point events assessed through 30 days (J vias 2022;256/94) Keywords: Abdominel aottic aneuryem; Endogesit, Endovascular repair

One-year results of the GORE EXCLUDER Conformable AAA Endoprosthesis system in the United States regulatory trial

 High neck angulation sub-study (> 60 < 90) 95 patients

Dai Yananouchi, MD, PhD, EMBA^{4,0} Custavo S. Oderich, MD,⁵ Sukgu Han, MD,⁴ Chandler Long, MD,⁹ Patrick Muck, MD,⁶ Erin Moore, MD,⁹ Jon S. Matsumura, MD,⁹ and Robert Rhee, MD, for the EXCC Investi-gators. Toyoake Japan Matison Wiccosin Houtons rokes: Los Angeles California: Durham. North Carolina: Cincinnati. Ohio, Jacksonville, Florida: Aurora, Colorado, and Brooklyn. New York

ABSTRACT

ABSTRACT Objective To report the midterm clinical outcomes from the CORES EXCLUDERS Conformable AAA Endoprosthesis system (EXC) prioral regulatory trial in the United States (U.S.) Methods: This is a prospective, multicinenter, investigational device exemption clinical trial at 31 U.S. sites with Core Laboratory assessment of Imaging and Independent adjudication of safety. The study enrolled patients with abdominal actic anaugmsm, AAA) with a minimum proximal landming zone :310 mm and proximal neck anaultation of Stob degrees between December 2017 and February 2019 as part of a larger study to gain indications of the EXCC device. Endpoints included patient survals, fleedom from secondary interventions, and steating right related outcomes. Results There were 8D patients enrolled (88.88 male, main 73.5 ± 81 y pars-old). Main maximum acritic aliameter was 27.28.0 mm (may 42.58.27). There was 100% fleedom from tops I and I moleciales and anaugmm-related ontarily at 26 mmin. Freedom (ADA was regression). 710.29(3) Hain A. 2.5 mmonth, thirteen position (50.5%) had type 2 mm objective. Sec-patients (82.89), through 64 month or anaugmn induces and assess patients (82.89), through 59 months underwent reintervention.

Conclusions: The 3-year outcomes have continued to show an adequate safety and efficacy profile of the EXCC device with no anewsysm related mortality or Type (III endolesk. These results demonstrate durability for an EVAR device in US regulatory trials (10 vars Surg 2024 = 1-11)

//////////////////////////////////////	dterm (3 y	<i>ear)</i> Resul	ts 13-03 E	XCC short r	neck IDE t	rial
Variable	1 month. N (%)	6 mo	12 mo	24 mo	36 mo	Total N (%)
Subjects	80	79	79	75	67	80
Subjects with CT scan	79	75	74	58	55	80
Endoleak	33/75 (44.0%)	25/70 (35.7%)	21/67 (31.3%)	16/53 (30.2%)	13/49 (26.5%)	36/78 (46.2%)
Type I	0/75	0/70	0/67	0/53	0/49	0/78
Type IA	0/75	0/70	0/67	0/53	0/49	0/78
Type IB	0/75	0/70	0/67	0/53	0/49	0/78
Type II	31/75 (41.3%)	24/70 (34.3%)	18/67 (26.9%)	16/53 (30.2%)	13/49 (26.5%)	35/78 (44.9%)
Type III	0/75	0/70	0/67	0/53	0/49	0/78
Type IV	0/75	0/70	0/67	0/53	0/49	0/78
Indeterminate	3/75 (4.0%)	1/70 (1.4%)	3/67 (4.5%)	1/53 (1.9%)	0/49	7/78 (9.0%)
Subjects with diameter change data (from baseline)	-	75	74	58	55	
Change in maximum abdominal						
≥ 5 mm Decrease		26 (34.7%)	27 (36.5%)	30 (51.7%)	32 (58.2%)	
No Change	-	48 (64.0%)	46 (62.2%)	24 (41.4%)	17 (30.9%)	
≥ 5 mm Increase	-	1 (1.3%)	1 (1.4%)	4 (6.9%)	6 (10.9%)	
AAA Rupture	0/77	0/72	0/69	0/53	0/49	0/80
Migration	0/79	0/75	0/73	0/58	0/55	0/80
Wire Fracture	0/73	0/69	0/71	0/55	0/51	0/80
Extrusion/Erosion	0/79	0/75	0/73	0/58	0/55	0/80

Early outcomes of the Conformable endograft in severe neck angulation from the Triveneto Conformable Registry Stelano Borwini, MD, Ph.D.¹ Nicola Spadoni, MD,⁴ Paolo Frigatti, MD,¹ Hichele Antonello, MD,⁴ Sandro Irsara, MD,⁴ Gian Franco Veraldi, MD,² Domenico Milite, MD,⁴ Edoardo Galeazzi, MD,⁴ Sandro Lepidi, MD,¹ Roinhold Perkmann, MD,¹ and Sebastiano Tasselli, MD,³ on behalf of the TriCoRe Contributors. Trend Johns Avdas, Abelina, Verona, Veroza. Tereico Boziona and Triste Lap

ABSTRACT: Instrument of the second se . reated with CEXC Device in nine vascular surgery centers of Triveneto area (Northeast Italy) and July 2022 were enrolled prospectively and analyzed retrospectively. Demographic and

respectively. Estimated freedom from reinterventions at 24 months was 92%. Aortic neck median postoperative angulation was 75° (range, 45°-139°).

Characteristics of Enrolled Patients		Pretreatment measurements	1	
Demographics	N=95	i retreatment measurements	N=95	
Age, years, mean (SD)	74.4 (7.23)	mean (SD)		
Sex at birth, n (%)				
Male	71 (74.7)	Maximum aortic diameter, mm	62.9 (11.8	
Female	24 (25.3)			
Ethnicity, n (%)			10 - 400	
Not Hispanic or Latino	88 (92.6)		42.7-103.1	
Hispanic or Latino	3 (3.2)			
Unknown	4 (4.2)	Aortic neck length, mm	21.3 (10.1	
Race*, n (%)				
White	87 (91.6)		10.0-57.0	
Black or African American	3 (3.2)		10.0 57.0	
American Indian or Alaska Native	1 (1.1)	Infrarenal aortic neck angle	71.6 (9.2)	
Other	4 (4.2)			
BMI, kg/m², mean (SD)	30.1 (7.93)		61.0-90.0	
Range	16.9, 66.3			
Median	28.5			

Primary Effectiveness Endpoint Through 12 months		
Patients eligible for primary effectiveness endpoint analysis ^b	N=77	
Primary effectiveness endpoint success, n (%)	73 (94.8)	
Technical Success, n (%)	75 (97.4)	
Successful access, deployment, removal of delivery catheters,	77 (100.0)	
patent, and access site closure		
Site-reported Type I and Type III endoleak ^d	2 (2.6)	
Type I or Type III endoleak at 12 months ^e , n (%)	0	
Migration ≥10 mm ^e , n (%)	0	
AAA enlargement ≥5 mm ^c , n (%)	1 (1.3)	
AAA rupture ^f , n (%)	0	
Conversion to open repair ^f , n (%)	1 (1.3)	

High Angulation Substudy 6 Months 12 Months			Procedure Post- 1 Month & Months 12 Months					
Ingit Angulation Substudy	0 monuis	12 10011113	Number of Subjects	95	95	95	95	92
Substudy	76	75	Endoleak		3/3(100.0	43/82(53.1	34/77(44.2	31/73(42.5
High Neck Angulation Substudy (>			Turne I		74	740	74	54)
50° and ≤ 90°)			Type IA	-	0/3	1/81(1.2%)	1/77(3.9%)	0/73
Change in Maximum Abdominal			Type IB	-	0/3	C)/81	0/77	0/73
Aortic Diameter from Baseline			Type II		3/3(100.0 %)	35/81(43.2 %)	29/77(37.7 %)	29/73(39.7 %)
(Core Lab)			Type III		0/3	0/81	0/77	0/73
Emm Dooroooo	22/28 08/1	26/24 79/1	Type IV	-	0/3	C/81	0/77	0/73
Sillin Decrease	22(20.9%)	20(34.7%)	Add Expansion 2 Smm		uya .	//support	3/77(0.5%)	1/25(1.3%)
No Change	53(69.7%)	48(64.0%)				and and		47.0024.0007
	4/4 00/1	444.000	Reintervention	0/95	0/95	2/95(2.1%)	2/95(2.1%)	3/92(3.3%)
2 5mm Increase	1(1.3%)	1(1.3%)	Conversion to Open Repair	0/95	0/32	1/95(1.1%)	0/95	0/92

		LL C/	AUSE		ANEURYSM RELATED MORTALI
1.0					1.0
8.0					60 08
0.6					- 80 Ber
0.4					90 50 0.4 -
0.2					82 60 0.2 -
-	Survival 95% Confi	dence interval			Sanfind 0.0. 50% Confidence Isterval
0.0		95	10	89	A Risk 95 95 95 93
0.0	0 30	90	180	365	0 10 00 100

		Endurant (2010)	Ovation (2012)	EXCC (Short Neck)	EXCC (High Neck)	EXCC (Both Substudies)
		Core Lab ¹	Core Lab	GIS	GIS	GIS
Proximal Neck Length (mm)	n	150	161	80	95	175
	N (<15mm)	15 ¹	25 ³	23	20	43
	% (<15mm)	10%	16%	29%	22%	25%
	Follow Up Duration	12 month	12 month	60 months	60 months	60 months
	Indication	≥10mm	≥7mm	≥10mm	≥10mm	≥10mm

Conclusions

- USA IDE trial data (main cohort) at midterm (3 years) shows unprecedented durability and clinical results
- High angle (≥10mm neck, ≤ 90-degree angulation) IDE trial arm (95 patients) shows same results as standard subset.
- A new frontier for safely treating high risk aortic neck patients with an *infrarenal sealing AAA device*
- The EXCC is *being used* in 10/90 anatomic situations throughout the world with excellent results in the *ongoing registry out to 5 years*

23

