

No Financial Disclosures								
Co-Lead the APSA-SVS Pediatric Vascular Surgery Task Force								
Engagement Award, ACORI Dote Dote								

			Division of the
Consider Tourniquet (avoid clamps / silastic loops)	Microvascular principles +High powered loop magnification	Interrupted Suture Line	
Proximal and distal thrombectomy •Eropsyls somalect de •Gnued an anglocath to fluch if similar	Doppler Interrogation (distal)	Consider Completion Arteriogram	
Doppler S Take Timo	signals May Vasod e To Return Vasod	ilators	

The Role of Endovascular Therapy in Pediatric Vascular Trauma is Evolving

- Future somatic growth
- Small vessel size limits utility of prosthetic conduits and access
 Introduction of a covered stent or iliac limb requires access (12Fr sheath / 4mm artery)
- Vessel spasticity (ie: vasospasm)

variate ele sex (%) ele sex (%) Diher Black Other IP (mellan ± IQR) Se rate S Se rate S S ertite AIS S Blumt Pronetrating	$\begin{array}{c c} \mbox{Children} & S, S$	Addescent 30, 2% 12-17 yeas (N = 733) 529 (72.7) 452 (61.7) 130 (17.7) 151 (20.6) 117.8 ± 27.1 111.4 ± 26.8 10.2 ± 5.4 4.6 ± 1.5 4.4 ± 0.6 38 ± 14.9 655 (89.6)	Mature 6.4.3% 18-21 years (N = 1.564) 1.247 (79.7) 944 (60.4) 305 (19.3) 305 (19.3) 315 (20.1) 121.2 ± 28.5 100.7 ± 5.3 4.3 ± 1.6 4.4 ± 0.5 36.1 ± 13.9 1.531 (86.8)	P value <0.001 0.78 0.001 0.009 0.079 0.012 0.001 <0.001
variate ce White Black Other P(mcdlan ± IQR) lse rate IS ured systems serie AIS S S S Principal of the systems principal of the systems series and the systems series and the systems series and the systems series and the systems principal of the systems series and the system	$\begin{array}{c} 1-11 \text{ years } (n=154) \\ 75 (56) \\ 77 (57.5) \\ 26 (19.4) \\ 114.6 \pm 28.9 \\ 125.6 \pm 27 \\ 9.5 \pm 3.3 \\ 4.2 \pm 1.8 \\ 4.3 \pm 0.5 \\ 34.1 \pm 15.1 \\ 121 (90.3) \\ 8 (6) \end{array}$	$\begin{array}{c} 12^{-11} \; \text{yeas} \; (\kappa=153) \\ 529 \; (72.7) \\ 452 \; (61.7) \\ 130 \; (17.7) \\ 113 \; (120.6) \\ 117.8 \; \pm 27.1 \\ 111.4 \; \pm 26.8 \\ 10.2 \; \pm 5.4 \\ 4.6 \; \pm 1.5 \\ 4.4 \; \pm 0.6 \\ 38 \; \pm 14.9 \\ 655 \; (89.6) \end{array}$	$\begin{array}{l} 1 = 1 & \text{years} \ (n = 1, 164) \\ 1, 247 \ (79, 7) \\ 944 \ (60, 4) \\ 305 \ (19, 5) \\ 315 \ (20, 1) \\ 121, 2 \ z \ 28, 5 \\ 107, 7 \ 5, 3 \\ 4, 3 \ z \ 1, 6 \\ 4, 4 \ 0, 5 \\ 36, 1 \ z \ 1, 5 \\ 1, 351 \ (86, 8) \end{array}$	0.003 0.003 0.003 0.009 0.009 0.009 0.012 0.001 <0.001
ale sex (%) ce White Black Other IP (median ± IQR) lse rate S sured systems write AIS s cethanism Blunt Prenerlating Colored and present Colored and present Colo	75 (56) 77 (57.5) 26 (19.4) 31 (23.1) 114.6 \pm 28.9 125.6 \pm 27 9.5 \pm 5.3 4.2 \pm 1.8 4.3 \pm 0.5 34.1 \pm 15.1 121 (90.3) 8 (6)	$\begin{array}{c} 529 \ (72.7) \\ 452 \ (61.7) \\ 130 \ (17.7) \\ 113 \ (120.6) \\ 117.8 \pm 27.1 \\ 111.4 \pm 26.8 \\ 10.2 \pm 5.4 \\ 4.6 \pm 1.5 \\ 4.4 \pm 0.6 \\ 38 \pm 14.9 \\ 655 \ (89.6) \end{array}$	$\begin{array}{c} 1.247\ (79.7)\\ 944\ (60.4)\\ 305\ (19.5)\\ 315\ (20.1)\\ 121.2\ 28.5\\ 108.2\ 2.25.9\\ 10.7\ \pm 5.3\\ 4.3\ \pm 1.6\\ 4.4\ \pm 0.5\\ 3.41\ \pm 1.5\\ 1.351\ (86.8) \end{array}$	<0.001 0.78 0.003 <0.001 0.009 0.079 0.012 0.001 <0.001
White Black Other P (median ± IQR) lse rate S S sured systems write AIS S S S Blunt Prenerating	$\begin{array}{c} 77 (57.5) \\ 26 (19.4) \\ 31 (22.1) \\ 1186 \pm 28.9 \\ 125.6 \pm 27 \\ 9.5 \pm 5.3 \\ 4.2 \pm 1.8 \\ 4.3 \pm 0.5 \\ 34.1 \pm 15.1 \\ \hline 121 (90.3) \\ 8 (6) \end{array}$	$\begin{array}{c} 452 \ (61.7) \\ 130 \ (17.7) \\ 151 \ (20.6) \\ 117.8 \pm 27.1 \\ 111.4 \pm 26.8 \\ 10.2 \pm 5.4 \\ 4.6 \pm 1.5 \\ 4.4 \pm 0.6 \\ 38 \pm 14.9 \\ \end{array}$	$\begin{array}{c} 944\ (60.4)\\ 305\ (19.5)\\ 315\ (20.1)\\ 121.2\ \pm 28.5\\ 108.2\ \pm 25.9\\ 10.7\ \pm 5.3\\ 4.3\ \pm 1.6\\ 4.4\ \pm 0.5\\ 36.1\ \pm 13.9\\ \hline \end{array}$	0.003 <0.001 0.009 0.012 0.001 <0.001
Black Other Pf (median ± IQR) lse rate 2S jurred systems write AIS S echanism Blunt Preneirating	$26 (19.4)31 (23.1)114.6 \pm 28.9125.6 \pm 279.5 \pm 5.34.2 \pm 1.84.3 \pm 0.534.1 \pm 15.1121 (90.3)8 (6)$	$\begin{array}{c} 130 \ (17.7) \\ 151 \ (20.6) \\ 117.8 \pm 27.1 \\ 111.4 \pm 26.8 \\ 10.2 \pm 5.4 \\ 4.6 \pm 1.5 \\ 4.4 \pm 0.6 \\ 38 \pm 14.9 \\ \end{array}$	305 (19.5) 315 (20.1) 121.2 \pm 28.5 108.2 \pm 25.9 10.7 \pm 5.3 4.3 \pm 1.6 4.4 \pm 0.5 36.1 \pm 13.9 1.351 (86.8)	0.003 <0.001 0.009 0.079 0.012 0.001 <0.001
Other P (median ± IQR) Ise rate S Jured systems write AIS S S S Certainism Blunt Penetrating	31 (23.1) 114.6 ± 28.9 125.6 ± 27 9.5 ± 5.3 4.2 ± 1.8 4.3 ± 0.5 34.1 ± 15.1 121 (90.3) 8 (6)	$\begin{array}{c} 151\ (20.6)\\ 117.8\pm27.1\\ 111.4\pm26.8\\ 10.2\pm5.4\\ 4.6\pm1.5\\ 4.4\pm0.6\\ 38\pm14.9\\ 655\ (89.6)\end{array}$	$\begin{array}{c} 315 \ (20.1) \\ 121.2 \pm 28.5 \\ 108.2 \pm 25.9 \\ 10.7 \pm 5.3 \\ 4.3 \pm 1.6 \\ 4.4 \pm 0.5 \\ 36.1 \pm 13.9 \end{array}$	0.003 <0.001 0.009 0.079 0.012 0.001 <0.001
P (median ± IQR) lse rate 2S jured systems stic AIS S echanism Blunt Penetrating	114.6 ± 28.9 125.6 ± 27 9.5 ± 5.3 4.2 ± 1.8 4.3 ± 0.5 34.1 ± 15.1 $121 (90.3)$ $8 (0)$	117.8 ± 27.1 111.4 ± 26.8 10.2 ± 5.4 4.6 ± 1.5 4.4 ± 0.6 38 ± 14.9 655 (89.6)	121.2 ± 28.5 108.2 ± 25.9 10.7 ± 5.3 4.3 ± 1.6 4.4 ± 0.5 36.1 ± 13.9 1.351 (86.8)	0.003 <0.001 0.009 0.079 0.012 0.001 <0.001
lse rate 28 vrtic AIS 5 echanism Blunt Penetrating	125.6 ± 27 9.5 ± 5.3 4.2 ± 1.8 4.3 ± 0.5 34.1 ± 15.1 121 (90.3) 8 (0)	111.4 ± 26.8 10.2 ± 5.4 4.6 ± 1.5 4.4 ± 0.6 38 ± 14.9 655 (89.6)	108.2 ± 25.9 10.7 ± 5.3 4.3 ± 1.6 4.4 ± 0.5 36.1 ± 13.9 1.351 (86.8)	<0.001 0.009 0.079 0.012 0.001 <0.001
25 jured systems ortic AIS 5 echanism Blunt Penetrating	9.5 ± 5.3 4.2 ± 1.8 4.3 ± 0.5 34.1 ± 15.1 121 (90.3) 8 (0)	10.2 ± 5.4 4.6 ± 1.5 4.4 ± 0.6 38 ± 14.9 655 (89.6)	10.7 ± 5.3 4.3 ± 1.6 4.4 ± 0.5 36.1 ± 13.9 1.351 (86.8)	0.009 0.079 0.012 0.001 <0.001
jured systems ortic AIS 8 echanism Blunt Penetrating	4.2 ± 1.8 4.3 ± 0.5 34.1 ± 15.1 121 (90.3) 8 (0)	4.6 ± 1.5 4.4 ± 0.6 38 ± 14.9 655 (89.6)	4.3 ± 1.6 4.4 ± 0.5 36.1 ± 13.9 1,351 (86.8)	0.079 0.012 0.001 <0.001
ortic AIS S echanism Blunt Penetrating	4.3 ± 0.5 34.1 ± 15.1 121 (90.3) 8 (6)	4.4 ± 0.6 38 ± 14.9 655 (89.6)	4.4 ± 0.5 36.1 ± 13.9 1.351 (86.8)	0.012 0.001 <0.001
S echanism Blunt Penetrating	34.1 ± 15.1 121 (90.3) 8 (0)	38 ± 14.9 655 (89.6)	36.1 ± 13.9 1.351 (86.8)	0.001
echanism Blunt Penetrating	121 (90.3) 8 (6)	655 (89.6)	1,351 (86.8)	<0.001
Blunt Penetrating	121 (90.3)	655 (89.6)	1,351 (86.8)	
Penetrating	8 (6)			
Out and an I am a second		74 (10.1)	195 (12.5)	
Omerrunknown	5 (3.7)	4 (0.5)	18 (1.2)	
d intervention				<0.007
NOM	126 (94)	498 (67.9)	1,013 (64.8)	
TEVAR	4 (3)	185 (25.2)	456 (29.2)	
OAR	4 (3)	49 (6.7)	87 (5.6)	
TEVAR & OAR	0 (0)	1 (0.1)	8 (0.5)	
solial disposition	- (-)	- ()	- ()	0.054
Home	46 (34.3)	248 (33.9)	640 (40.9)	
Innatient rehab	1 (0.7)	45 (6.1)	95 (6.1)	
Nursing facility	18 (13.4)	72 (9.8)	133 (8.5)	
Other hospital	13 (9.7)	112 (15.3)	254 (16.2)	
Deceased	25 (18.7)	134 (18.3)	263 (16.8)	
Other	31 (23.1)	122 (16.6)	179 (11.4)	
ortality	25 (18 7)	134 (18.3)	263 (16.8)	0.63
N T C T S H L N C D C O	OM EVAR AR EVAR 6 OAR praid dispession onne impatient rehab unsing facility ther hospital eccased ther reality cs = sumstactly significant Interquantile Range;	OM 126 (04) IVAR 4 (3) AR 6 (0) AR 6 (0) Mark of polymer 6 (0) Mark of polymer 10(3) Justice relable 10(3) Justice relable 10(3) Justice relable 25 (167) there 31 (23.1) rully 25 (187) there 32 (187) rully 25 (187)	Date Date (94) (94) (97) VVA. 44) 144 145 123 VVA. 64) 145 143 144 124 VVA. 64) 100.1	DML L20, 041 448 (02.7) 1,013 (64.8) VVA2 4.10 1.83 (51.2) 68.05 (23.1) VVA8 0.00 1.0.11 8.03 (23.1) VVA8 0.00 1.0.11 8.03 (23.1) VVA8 0.00 1.0.11 8.03 (23.1) VVA8 0.01 1.0.13 8.03 (23.1) VVA8 0.01 1.0.13 8.03 (23.1) VVA8 0.01 1.0.13 8.04 (23.1) VVA8 0.01 1.0.13 8.04 (23.1) VVA8 0.01 1.0.13 9.04 (23.1) VVA8 0.01 (27.1) 1.0.13 (23.1) 9.04 (23.1) VVA8 0.01 (27.1) 1.0.14 (13.1) 2.04 (13.1) VVA9 1.0.15 (13.1) 2.04 (13.1) 2.04 (13.1) VVA9 1.0.15 (14.10.1.10.10.10.10.10.10.10.10.10.10.1

TEVAR associated with higher likelihood of home dispo (54%) v. NOM (31.8%) and OAR (44%)

Conclusion: There is a role for endovascular treatment of aortic injury

- While there is no dedicated EV stent for pediatric trauma and insufficient data (long-term follow-up) to make definitive recommendations
- In anatomically feasible patients, consider TEVAR for higher grade(ie: >II) injuries over NOM or open repair
- 'Stop-gap' / bridge to formal repair
- Remember EV adjuncts for hemorrhage control (balloon occlusion and embolization)
- Judicious surveillance
- Future investigations required

What if exam failed to improve with

- anticoagulation? Balloon (or suction) Thrombectomy Catheter limitations (size) in infants Consider micro-surgical techniques
- Thrombolysis (level 1C evidence)

 - Tissue plasminogen activator (tPA) 0.5mg/kg/h infused for 6 hours
 Consider multi-disciplinary approach; monitor for compartment syndrome
 If there are contraindications to thrombolytic therapy or there is an imminent danger of limb loss, surgical intervention is recommended [level L cuvidence).

