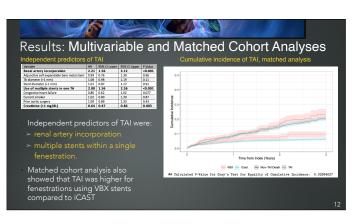
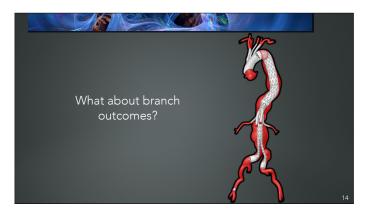

5-year Kaplan-Meier Estimates (%)	All targets n = 3155	Fenestration n = 2166 (69%)	Branch n = 989 (31%)	P value
Primary patency	90±1	94±1	83±3	<.001
Secondary patency	94±1	97±1	89±2	<.001
Freedom from target vessel:				
Instability	85±1	88±2	80±2	.001
Type IC or IIIC Endoleak	94±1	94±1	95±1	.78
Secondary intervention	91±1	92±1	90±2	.051
	,155 renal			


Incorporation aligned by stents	All targets n = 3717	Renal n = 2165	SMA n = 926	CA n = 628	P value
Fenestrations*	3720	2166	926	626	
iCAST stent graft	3448 (93)	1993 (92)	869 (94)	586 (94)	<.001
VBX/iCast stent graft	116 (3)	93 (4)	15 (2)	8 (1)	
VBX stent graft	91 (2)	33 (2)	31 (3)	27 (4)	
Viabahn/iCast stent graft	35 (1)	31 (1)	2 (0.2)	2 (0.3)	
Other combinations	27 (1.2)	14 (1.2)	9 (1.2)	3 (0.5)	
More than 1 stent	530 (14)	398 (18)	91 (10)	41 (7)	<.001
Mixed stent	153 (4)	124 (6)	19 (2)	10 (8)	<.001
Adjunctive bare metal	727 (20)	365 (17)	310 (33)	52 (8)	<.001



Conclusion-Fenestrations

 The performance of both VBX and iCAST as bridging covered stents in reinforced fenestrations was excellent, with overall freedom from TAI exceeding 90% at 5 years

- Statistically, iCAST stents achieved slightly better overall outcomes in both the unmatched and matched analyses
- Renal artery incorporation and use of multiple stents within a single fenestration
 were independent predictors of TAI
- Limitations of the study include shorter follow-up for the VBX cohort, possible selection bias, and lack of granular data to detect target artery anatomy

ARC - Directional Branch Results									
5 year - KMs	Overall n = 2253	Viabahn stent graft n = 554	VBX stent graft n= 729	Fluency stent graft n=638	iCast stent graft n=332	P value			
Primary patency	90±1.3	85±4.4	94±1.5	91±1.6	92±2.8	.089			
Secondary patency	93±1.1	90±4.2	96±1.7	94±1.4	95±1.9	.720			
Target artery instability	86±1.3	83±4.5	90±1.9	90±1.5	78±4.3	.004			
Target artery endoleak I to III	95±0.7	97±1.0	95±1.3	98±0.7	86±3.6	<.001			
Target artery secondary intervention	92±1.0	93±1.5	92±1.7	97±0.9	82±4.4	<.001			
Follow up (months)	22±21	19±17	10±9	34±28	25±17	<.001			

VBX currently performing better overall however: Follow-up/experience is shorter compared to other stents

• Shortcomings for all current bridging stents including VBX

- SESG more accurate deployment , but sacrifice delivery profile
 Increased risk of stenosis/occlusion
- BESG foreshortening, lower profile, better trackability?
 Increased risk of endoleaks
- Each stent has its inherent properties and deployment nuances which requires
 experience and particular techniques
- VBX does has some specific deployment step to ensure superb outcomes

