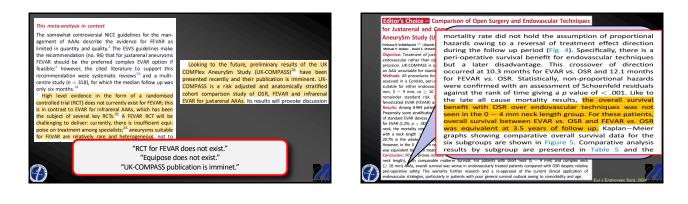
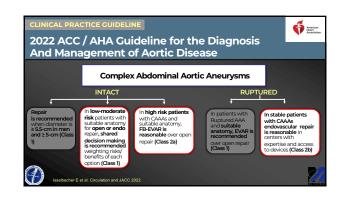


Disclosures	
 Cook Medical, Phillips Imaging, Cryolife 	
Research grants	
Case proctor	
• Consult	
All compensation goes to UMass Memorial Foundation and none to me personally.	2

Open Surgical I Large Si		air of Com e Center St		A in	
Author (Reference)	n	30-day Mortality	Renal Injury	Dialysis	
Giulini et al (Eur JVES 2000)	56	3.6%	-	2%	
Ayri et al (Ann Vas Sur 2001)	53	11%	-	-	
Sarac et al (J Vasc Surg 2002)	138	5.1%	22%	3%	
Shortell et al (J Vasc Surg 2003)	112	6%	12%	3%	
Bicknell et al (Eur JVES 2003)	44	6.8%	-	-	
Kudo et al (J Vasc Surg 2008)	18	0	17%	5.6%	
Chiesa et al (J Vasc Surg 2006)	119	7.6%	18%	5.8%	
West et al (J Vasc Surg 2006)	243	2.5%	22%	2%	
Knott et al (J Vasc Surg 2007)	126	0.8%	22%	196	
7	1202	4.2%	19%	3.6%	5
$\boldsymbol{\mathcal{D}}$					2




	Cont Ontostel	value	OBIT	011(00/04)	i valac
30-day mortality	For age > 65	2.2%	5.0%	0.50(0.30-0.79)	.004
Dialysis	2x↑ mortality	1.2%	5.4%	0.60(0.35-0.89)	<.001
Cardiac complications	3x↑ dialysis, cardiad		7.6%	0.42(0.28-0.62)	<.001
Pulmonary complications	pulmonary complicati	ons 2.5%	12%	0.29(0.28-0.62)	<.001
Any complicatio		8%	23%	0.38(0.26-0.42)	<.001
				al. Eur J Vasc Endovasc	5

	AAA in	France	r Complex	
Revie	w of 2 High Vol	lume Centers o	on CAAA	
	Open Repair n = 102	Fenestrated Repair n = 102 patients	p-value	
<u>Long-term</u> overall mortality	36.3%	40.2%	0.40	
Aneurysm-related mortality	5.8%	6.8%	0.30	
Late renal function decline	47.4%	27.8%	<0.01	
Reinterventions	5.1%	23.5%	<0.01	
23	(↑ renal functi 4x↓ Reinteve	entions	nelli et al. Eur J Vase Endovase Surg 20	

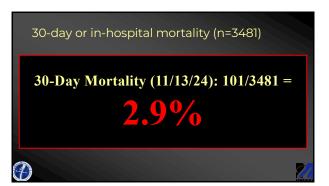
SYSTEMATIC REVIEW	
Long Term Outcomes and Du	rability of Fenestrated Endovascular Aneurysm
Repair: A Meta-analysis of Ti	me to Event Data
Aurélien M. Guéroult ^{5,4} , Aisha Bashir ¹ , Bilal Ashar ¹ , Jam ⁵ St George's Vascular Institute; St George's, University of Londo	in, UK
are uncertain. This meta-analysis reports lo and one year sac regression after FEVAR.	erm outcomes for fenestrated endovascular aneurysm repair (FEVAR) ing term survival, freedom from re-intervention, target vessel patency,
The study was registered with the interr CRD42023401468).	a-analysis to pool time to event data according to PRISMA guidelines. national prospective register of systematic reviews (PROSPERO) (ID:
independently screened by two authors interest was an inclusion criterion. F published curves and pooled by random	Cochrane databases were searched from 1992 – 2023; articles were . Publication of complete time to event data for any outcome of faw Kapian–Meier probabilities were directly extracted from n effects. Risk of bias was assessed using ROBINS I and certainty
studies (n - 4 371). The pooled mean a	trieved, 2 869 screened after duplicate removal, yielding 37 included ge was 73.2 years (interquartile range (IQR) 72.2, 73.7) and 87.4% [] 85.8 — 88.9). Pooled Kaplan—Meier estimated probabilities of
80.8% (95% CI 78.0 - 83.2), and 65.1% (5 3 211 patients) at one, three, and five ye	nts) at one, three, and five years were 91.6% (95% CI 90.2 $-$ 92.9), 35% CI 60.9 $-$ 69.1). For freedom from re-intervention ($n = 24$, $n =$ pars these were 90.2% (95% CI 87.3 $-$ 92.7), 80.9% (95% CI 76.5 $-$
three, and five years, these were 96.6% (Cl 89.3 - 96.0). Pooled estimate of sac r	for target vessel patency $(n = 13, n = 5805 \text{ target vessels})$ at one, 99% (3 $94.9 - 98.0)$, $94.5%$ ($95%$ (1 $91.7 - 96.7)$, and $93.1%$ ($95%egression (n = 8, n = 560) at one year was 40.2\% (95\% CI 28.9 - ein 11$ studies and low for the remaining 25.
Conclusion: There are moderate to low	certainty data supporting reasonable long term outcome estimates rsm repair. Beyond five years there is a lack of data in the literature.

commendation	Class	Level
In patients with CAAAs, open repair or complex endovascular repair should be considered based on patient status, anatomy, local expertise, team experience and patient preference.	lla	с
In complex endovascular AAA repair, FB-EVAR should be considered the preferred option when feasible	lla	с
In complex endovascular AAA repair, parallel grafts, endo-stables, in situ fenestrations may be considered in the emergency setting when fenestrated grafts are not indicated or available or as a bail out, ideally restricted to ≤2 parallel grafts	lla	с
In patients with CAAAs, new techniques or concepts (EVAS, in situ, etc) are not recommended as first line of treatment	ш	с
In patients with ruptured CAAAs, open repair or complex endovascular repair (with PMEGs, off the shelf or parallel grafts) may be considered based on patient status, anatomy, local experience, team experience and patient preference	lla	с
	In patients with CAAAs, open repair or complex endovascular repair should be considered based on patient status, anatomy, local expertise, team experience and patient preference. In complex endovascular AAA repair, FB-EVAR should be considered the preferred option when feasible. In complex endovascular AAA repair, parallel grafts, endo-stables, in situ fenestrations may be considered in the emergency setting when fenestrated grafts are not indicated or available or as a bail out, ideally restricted to s2 parallel grafts. In patients with CAAAs, new techniques or concepts (EVAS, in situ, etc) are not recommended as first line of treatment. In patients with ruptured CAAAs, open repair or complex endovascular repair with PMEOs, of the shelf or parallel grafts may be considered based on patient with PMEOs, of the shelf or parallel grafts may be considered based on patient with PMEOs, of the shelf or parallel grafts may be considered based on patient with PMEOs, of the shelf or parallel grafts may be considered based on patient with PMEOs.	In patients with CAAAs, open repair or complex endovascular repair should be considered based on patient status, anatomy, local expertise, team experience and patient preference In complex endovascular AAA repair, FB-EVAR should be considered the preferred option when feasible In complex endovascular AAA repair, parallel grafts, endo stables, in situ fenestrations may be considered in the emergency setting when fenestrated grafts are not indicated or available or as a bail out, ideally restricted to s2 paralled grafts the first line of treatment In patients with CAAAs, new techniques or concepts (EVAS, in situ, etc) are not recommended as first line of treatment In patients with ruptured CAAAs, open repair or complex endovascular repair with PMEOs, of the shelf or parallel grafts or based on patient In patients with ruptured CAAAs, open repair or complex endovascular repair

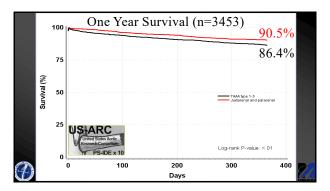
Severity of Acute Kidney Injury is Associated with Decreased Survival After Fenestrated & Branched Endowszcular Aneuryym Repair Ultranst difficium Mitalin Without (1000) (2010) (2010) (2010) Ultranst, Without Mitalin (2010) (2	Post-Dissection Aortic Aneurysm Sac Enlargement After Fenestrated and Branched Endovascular Aortic Aneurysm Repair Mer Mark Mark Tantan M Mark Mark Mark Tantan M Mark Mark Mark Tantan M Mark Mark Mark Mark M Mark Mark M Mark M Mark M Mark M Mark M Mark M Mark M Mark M M Mark M M M M M M M M M M M M M M M M M M M
n=2413	Division of Vascular and $n=3296$ UTSouthwestern Medical Center
Impact of Bridging Stent Selection in	Anticoagulant Therapy After ted/Branched Endovascular Aortic Repair
Reinforced Fenestrations During Fenestrated/Branched Endovascular Aortic Aneurysm Repair	$\frac{1}{\frac{1}{2}} \frac{1}{\frac{1}{2}} $
Memory Tack (D): Kinz Lehres, Ki) Andrey Subases (M) (Adar N, Berk, MC). Memory Street, MC) (Adarba Oddrich, MC): Oriols (Throns, MC), Mark A. Farber, MC) (Memory, Lagrence, MC), Mathora, Street, MC), Metrix A. Grace J, Wang MC, MC) (Mark A. m=29991	Fan MD ³ , Andres Schauser MD ³ , Adam M Beit MD ⁴ , Marthew I Exploten MD ³ , Marth A Ferbert Marten I dataser MD ⁴ , W Adam V, Len MD ⁵ , Suarano S, Ocherch MD ³ , Marthew E Scherch MD ⁴ , Marthew J Marthew F Johnson MD ⁴ , Marthew MD ⁴ , MD ⁴ , Marthew MD ⁴

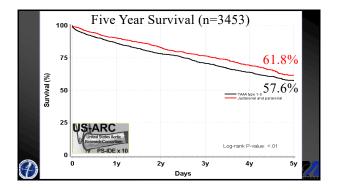
=3453 .5 (8.3) 23 (70) 54 (86) '8 (8.1) 6 (1.0) 3 (0.4) : (0.1) 1 (2.6) 7 (2.2)	n=2357 72.8 (8.6) 1546 (66) 1962 (83) 226 (9.6) 22 (0.9) 7 (0.3) 2 (0.1) 71 (3.0) 63 (2.7)	n=1096 75.1 (7.5) 877 (80) 992 (91) 52 (4.7) 14 (1.3) 6 (0.6) 0 (0) 20 (1.8) 14 (1.3)	<0.000
23 (70) 54 (86) (8 (8.1) 6 (1.0) 3 (0.4) ((0.1) 1 (2.6) 7 (2.2)	1546 (66) 1962 (83) 226 (9.6) 22 (0.9) 7 (0.3) 2 (0.1) 71 (3.0)	877 (80) 992 (91) 52 (4.7) 14 (1.3) 6 (0.6) 0 (0) 20 (1.8)	0.37 0.99 0.043
54 (86) (8 (8.1) 6 (1.0) 3 (0.4) (0.1) 1 (2.6) 7 (2.2)	1962 (83) 226 (9.6) 22 (0.9) 7 (0.3) 2 (0.1) 71 (3.0)	992 (91) 52 (4.7) 14 (1.3) 6 (0.6) 0 (0) 20 (1.8)	<0.0001 <0.0001 0.35 0.37 0.99 0.043
8 (8.1) 6 (1.0) 3 (0.4) (0.1) 1 (2.6) 7 (2.2)	226 (9.6) 22 (0.9) 7 (0.3) 2 (0.1) 71 (3.0)	52 (4.7) 14 (1.3) 6 (0.6) 0 (0) 20 (1.8)	<0.0001 0.35 0.37 0.99 0.043
8 (8.1) 6 (1.0) 3 (0.4) (0.1) 1 (2.6) 7 (2.2)	226 (9.6) 22 (0.9) 7 (0.3) 2 (0.1) 71 (3.0)	52 (4.7) 14 (1.3) 6 (0.6) 0 (0) 20 (1.8)	<0.0001 0.35 0.37 0.99 0.043
6 (1.0) 3 (0.4) (0.1) 1 (2.6) 7 (2.2)	22 (0.9) 7 (0.3) 2 (0.1) 71 (3.0)	14 (1.3) 6 (0.6) 0 (0) 20 (1.8)	0.35 0.37 0.99 0.043
3 (0.4) (0.1) 1 (2.6) 7 (2.2)	7 (0.3) 2 (0.1) 71 (3.0)	6 (0.6) 0 (0) 20 (1.8)	0.37 0.99 0.043
(0.1) 1 (2.6) 7 (2.2)	2 (0.1) 71 (3.0)	0 (0) 20 (1.8)	0.99 0.043
1 (2.6) 7 (2.2)	71 (3.0)	20 (1.8)	0.043
7 (2.2)			
	63 (2.7)	14 (1.3)	0.010
47 (48)	1062 (45)	585 (54)	< 0.000
11 (35)	809 (34)	402 (37)	0.19
1 (1.8)	53 (2.3)	8 (0.7)	0.002
23 (15)	334 (14)	189 (17)	0.019
69 (92)	2176 (92)	993 (91)	0.06
33 (27)	624 (27)	309 (28)	0.3
31 (16)	304 (13)	227 (24)	< 0.000
27 (97)	2259 (96)	1068 (98)	0.030
3 (5.4)	3.8 (6.0)	2.0 (3.4)	< 0.0001
	1 (1.8) 13 (15) 69 (92) 13 (27) 11 (16) 27 (97)	$\begin{array}{ccccccc} 1 & (1.8) & 53 & (2.3) \\ 3 & (15) & 334 & (14) \\ 59 & (92) & 2176 & (92) \\ 33 & (27) & 624 & (27) \\ 11 & (16) & 304 & (13) \\ 27 & (97) & 2259 & (96) \\ 3 & (5.4) & 3.8 & (6.0) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

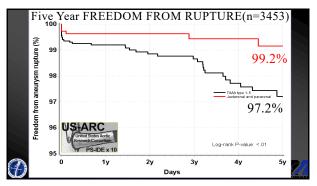
	Total n=3453	TAAA (1-5) n=2357	Complex AAA n=1096	p-value
Age at index procedure, mean (std)	73.5 (8.3)	72.8 (8.6)	75.1 (7.5)	< 0.0001
Male sex	2423 (70)	1546 (66)	877 (80)	< 0.0001
Race (can select more than one)				
White	2954 (86)	1962 (83)	992 (91)	< 0.0001
Black	278 (8.1)	226 (9.6)	52 (4.7)	< 0.0001
Asian	36 (1.0)	22 (0.9)	14 (1.3)	0.35
American Indian or Alaska Native	13 (0.4)	7 (0.3)	6 (0.6)	0.37
Native Hawaiian or Pacific Islander	2 (0.1)	2 (0.1)	0 (0)	0.99
Other/unknown	91 (2.6)	71 (3.0)	20 (1.8)	0.043
Hispanic ethnicity	77 (2.2)	63 (2.7)	14 (1.3)	0.010
Comorbidities				
CAD	1647 (48)	1062 (45)	585 (54)	< 0.0001
COPD	1211 (35)	809 (34)	402 (37)	0.19
Renal failure requiring dialysis	61 (1.8)	53 (2.3)	8 (0.7)	0.002
Diabetes	523 (15)	334 (14)	189 (17)	0.019
Hypertension	3169 (92)	2176 (92)	993 (91)	0.06
Current tobacco use	933 (27)	624 (27)	309 (28)	0.3
Prior EVAR	531 (16)	304 (13)	227 (24)	< 0.0001
Technical success	3327 (97)	2259 (96)	1068 (98)	0.030
ICU LOS days, mean (std)	3.3 (5.4)	3.8 (6.0)	2.0 (3.4)	< 0.0001
Total LOS days, mean (std)	6.4 (9.4)	7.2 (9.3)	4.8 (9.4)	<0.0001

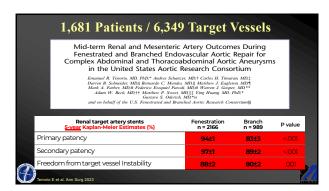

	Total	Complex AAA
	n=3453	n=1096
Age at index procedure, mean (std)	73.5 (8.3)	75.1 (7.5)
Male sex	2423 (70)	877 (80)
Race (can select more than one)		
White	2954 (86)	992 (91)
Black	278 (8.1)	52 (4.7)
Asian	36 (1.0)	14 (1.3)
American Indian or Alaska Native	13 (0.4)	6 (0.6)
Native Hawaiian or Pacific Islander	2 (0.1)	0(0)
Other/unknown	91 (2.6)	20 (1.8)
Hispanic ethnicity	77 (2.2)	14 (1.3)
Comorbidities		
CAD	1647 (48)	585 (54)
COPD	1211 (35)	402 (37)
Renal failure requiring dialysis	61 (1.8)	8 (0.7)
Diabetes	523 (15)	189 (17)
Hypertension	3169 (92)	993 (91)
Current tobacco use	933 (27)	309 (28)
Prior EVAR	531 (16)	227 (24)
Technical success	3327 (97)	1068 (98)
ICU LOS days, mean (std)	3.3 (5.4)	2.0 (3.4)
Total LOS days, mean (std)	6.4 (9.4)	4.8 (9.4)

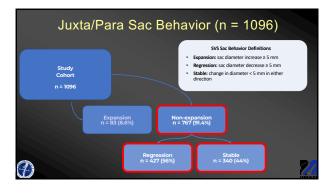
	Total	Complex AAA	
	n=3453	n=1096	
Age at index procedure, mean (std)	73.5 (8.3)	75.1 (7.5)	
Male sex	2423 (70)	877 (80)	
Race (can select more than one)			
White	2954 (86)	992 (91)	
Black	278 (8.1)	52 (4.7)	
Asian	36 (1.0)	14 (1.3)	
American Indian or Alaska Native	13 (0.4)	6 (0.6)	
Native Hawaiian or Pacific Islander	2 (0.1)	0 (0)	
Other/unknown	91 (2.6)	20 (1.8)	
Hispanic ethnicity	77 (2.2)	14 (1.3)	
Comorbidities			
	1647 (48)	585 (54)	
COPD	1211 (35)	402 (37)	
Renal failure requiring dialysis	61 (1.8)	8 (0.7)	
Diabetes	523 (15)	189 (17)	
Hypertension	3169 (92)	993 (91)	
Current tobacco use	933 (27)	309 (28)	
Prior EVAR	531 (16)	227 (24)	
Technical success	3327 (97)	1068 (98)	
ICU LOS days, mean (std)	3.3 (5.4)	2.0 (3.4)	
Total LOS days, mean (std)	6.4 (9.4)	4.8 (9.4)	


	Total	Complex AAA
	n=3453	n=1096
Age at index procedure, mean (std)	73.5 (8.3)	75.1 (7.5)
Male sex	2423 (70)	877 (80)
Race (can select more than one)		
White	2954 (86)	992 (91)
Black	278 (8.1)	52 (4.7)
Asian	36 (1.0)	14 (1.3)
American Indian or Alaska Native	13 (0.4)	6 (0.6)
Native Hawaiian or Pacific Islander	2 (0.1)	0 (0)
Other/unknown	91 (2.6)	20 (1.8)
Hispanic ethnicity	77 (2.2)	14 (1.3)
Comorbidities		
CAD	1647 (48)	585 (54)
COPD	1211 (35)	402 (37)
Renal failure requiring dialysis	61 (1.8)	8 (0.7)
Diabetes	523 (15)	189 (17)
Hypertension	3169 (92)	993 (91)
Current tobacco use	933 (27)	309 (28)
Prior EVAR	531 (16)	227 (24)
Technical success	3327 (97)	1068 (98)
ICU LOS days, mean (std)	3.3 (5.4)	2.0 (3.4)
Total LOS days, mean (std)	6.4 (9.4)	4.8 (9.4)


	Total	Complex AAA
	n=3453	n=1096
Age at index procedure, mean (std)	73.5 (8.3)	75.1 (7.5)
Male sex	2423 (70)	877 (80)
Race (can select more than one)		
White	2954 (86)	992 (91)
Black	278 (8.1)	52 (4.7)
Asian	36 (1.0)	14 (1.3)
American Indian or Alaska Native	13 (0.4)	6 (0.6)
Native Hawaiian or Pacific Islander	2 (0.1)	0(0)
Other/unknown	91 (2.6)	20 (1.8)
Hispanic ethnicity	77 (2.2)	14 (1.3)
Comorbidities		
CAD	1647 (48)	585 (54)
COPD	1211 (35)	402 (37)
Renal failure requiring dialysis	61 (1.8)	8 (0.7)
Diabetes	523 (15)	189 (17)
Hypertension	3169 (92)	993 (91)
Current tobacco use	933 (27)	309 (28)
Prior EVAR	531 (16)	227 (24)
Technical success	3327 (97)	1068 (98)
ICU LOS days, mean (std)	3.3 (5.4)	2.0 (3.4)
Total LOS days, mean (std)	6.4 (9.4)	4.8 (9.4)


	Total	Complex AAA
	n=3453	n=1096
Age at index procedure, mean (std)	73.5 (8.3)	75.1 (7.5)
Male sex	2423 (70)	877 (80)
Race (can select more than one)		
White	2954 (86)	992 (91)
Black	278 (8.1)	52 (4.7)
Asian	36 (1.0)	14 (1.3)
American Indian or Alaska Native	13 (0.4)	6 (0.6)
Native Hawaiian or Pacific Islander	2 (0.1)	0 (0)
Other/unknown	91 (2.6)	20 (1.8)
Hispanic ethnicity	77 (2.2)	14 (1.3)
Comorbidities		
CAD	1647 (48)	585 (54)
COPD	1211 (35)	402 (37)
Renal failure requiring dialysis	61 (1.8)	8 (0.7)
Diabetes	523 (15)	189 (17)
Hypertension	3169 (92)	993 (91)
Current tobacco use	933 (27)	309 (28)
Prior EVAR	531 (16)	227 (24)
Fechnical success	3327 (97)	1068 (98)
CU LOS days, mean (std)	3.3 (5.4)	2.0 (3.4)
Total LOS days, mean (std)	6.4 (9.4)	4.8 (9.4)




A Quarter Century of Organ Protection in Open Thoracoabdominal Repair Authory L. Eurore, MD. Refore K. Smith, MD. MPH, Kringfer M. Charlow-Ow, MD, Ramo A, Ajji, MJ, An Accasado, MJ, Charlow C. Miller, M. PhD, and Reform J. Suf, MD	Dr. Safi- 1896 patients 30 Day Mortality 16%
Ann Sarg. 2015.	
Outcomes of 3309 thoracoabdominal aortic aneurysm repairs Joseph S. Coseli, MD, ⁴⁴⁵ Sont A. LeMare, MD, ⁵⁴⁴⁴ Oumain Preventz, MD, ⁴⁴⁶ Kin I de In Cost, MD, ⁴⁴⁵ Denna A. Cosley, MD, ⁵⁴ Mu D. Fore, MS, ⁴⁴ Alan P. Sott, MEL ⁴⁴ Snan Y. Guen, MPH, ⁴⁴ Courtny N. Arnelonde, MSPH, ²⁴ and Tadd K. Ronegrat, MD ⁴⁴⁶⁴ Snan Y. Guen, MPH, ⁴⁴ Courtny N. Arnelonde, MSPH, ²⁴ and Tadd K. Ronegrat, MD ⁴⁴⁶⁴	Dr. Coselli – 3,309 patients 30 Day Mortality 7%
Durability of open surgical repair of type Hill thoracoabdominal aortic aneurysm Omstarka ALEs (b): Started Castes, KC): Works 16 Koll KD, KC: Jacob Matha, KC): Starter of effects and another the KC): Which is found to be for the Matha KC is starter of effects and another the KC.	Dr. Cambria – 516 patients 30 Day Mortality 8%
J Vac Surg. 2019.	

Conclusions

- F/BEVAR is associated with lower morbidity and mortality compared to open surgical repair for complex AAA (despite being eoinparce to open surgical repair for complex AAA (despite oring used in older and higher risk patients)
 Protection from rupture and from sac enlargement is excellent
 "Open repair is the gold standard." Really??? Enough is enough,
- it no longer is.
- Limitations of F/BEVAR are important to acknowledge: secondary intervention, limited access, regulatory hurdles, cost, and need for surveillance • The US ARC has established a higher level of evidence supporting
- use of FB-EVAR in most patients with cAAA (and TAAAs)

