

The Role of Alternative Imaging for Carotid Disease

Leslie M. Scoutt, MD, FACR Professor of Radiology, Surgery, & Cardiology Medical Director, Non-Invasive Vascular Lab Yale School of Medicine

What's Best & When Is It Necessary?

Leslie M. Scoutt, MD, FACR Professor of Radiology, Surgery, & Cardiology Medical Director, Non-Invasive Vascular Lab Yale School of Medicine

Disclosures

- Educational consultant for Philips Healthcare
- Many thanks to my Neuroradiology Colleagues, Drs. Sandra Abi Fadel & Michele Johnson

Categories

- Go 1st to alternative imaging
- Might try US 1st, but if negative proceed to alternative imaging
- US is non-diagnostic, need further evaluation
- Most prefer CTA w/ MRA as problem solver
 - CTA: better spatial tissue resolution, faster, more readily available
 - MRA: if iodinated contrast allergy, better look at brain parenchyma, slightly better soft tissue resolution

#1: Acute Stroke

- CTA First!
 - Visualize distal circulation to assess need for
 - emergent thrombectomy - Time is of the essence

#1: Acute Stroke

#1: Acute Stroke

Carotid US obtained later
 To establish baseline for follow up

#2: Suspected ICA Occlusion on US

- US (and MRA) may have F+ exams
- CTA
- May need to evaluate the distal circulation to determine optimal management
 - Distal string sign
 - Collateral flow patterns
 - Occlusion above the skull base

#3: Dxs in Mid to Distal ICA or above Skull Base

- Limited visualization on US in most pts, esp on grayscale
 - FMD
 - ICA dissection

#3: Type 2 FMD

- · Stenosis usu in mid to distal ICA
- May see beading on US
- But, inadequate resolution to see intraluminal webs or stenosis

#3: Type 2 FMD

• Stenosis usu in mid to distal ICA

#3: Personal or Family Hx of FMD

- Need to rule out intracranial aneurysm
- CTA or MRA

#3: ICA Dissection

#3: ICA or VA Dissection

- Hints on US
 - Attenuated, irregular vessel contour
 - Tapering lumen
 - Smooth, homogeneous wall thickening
 - Proximal high resistance waveform, esp low PSV
 - Distal ICA occlusion in young pt or pt w/o significant proximal plaque

#3: ICA Dissection

#3: ICA Dissection

#4: Dizziness

- Start with carotid US, but if negative...
- Need to rule out intracranial stenosis/occlusions and evaluate collateral pathways
- CTA

#5: Proximal Disease

- Stenosis, Dissections
- Origin of the IA, CCAs, SCLA
 Often outside the FOV of the US Tx
 - Waveforms of the cervical CCAs, ICAs, VAs might give you a hint
 - But for direct visualization.....
- CTA >> MRA

Innominate Stenosis

#6: US Non-Diagnostic

- Discrepancy btwn GS and Doppler criteria
- Discrepancy in Doppler criteria
- Shadowing from plaque, tortuosity, poor visualization → incomplete or poor visualization of residual lumen so can't estimate degree of stenosis
- CTA

50-69% Lt ICA Stenosis

